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INTRODUCTION 

Wireless sensor networks (WSN) have been 
the foundation for the development of a wide 
range of systems and services for many years. 
Their characteristic feature is the use of many 
spatially dispersed sensors [1]. In most cases, the 
knowledge of their relative position and distance 
is the key information for the correct implementa-
tion of the functionality assigned to a given WSN 
[2]. A summary of the issues related to the loca-
tion and distance measurement (but also other 
key parameters) for the most popular applica-
tions of wireless, mobile and WSN networks is 
briefly presented in the review article [3]. Due to 
the wide and still growing area of WSN applica-
tions, the issue of estimating the distance among 
network nodes has been the subject of intensive 
research. Among the many solutions proposed 
in recent years, by far the most popular are those 
based on the measurement of the Received Signal 

Strength Indicator (RSSI) [1, 4]. Other solutions 
are based on indicators such as LQI (Link Qual-
ity Indicator) or time difference between send-
ing and receiving a radio signal known as ToA 
(Time of Arrival) [5, 6]. Such frequent use of the 
RSSI results mainly from the relatively simple 
implementation of the measurement of this sig-
nal, which does not require the use of additional 
hardware resources. The methods using RSSI 
measurement do not interfere with the commu-
nication overhead, which is promising in WSN 
systems with limited resources, e.g. power [7, 
8]. The RSSI values measured are used in mod-
els which bind the attenuation of the transmitted 
signal to the distance travelled by the signal. In 
other words, the process of estimating a specific 
distance between two antennas requires the use 
of an appropriate attenuation model on the signal 
transmission path (path loss model). However, 
this simple concept of solving the distance esti-
mation problem is really challenging. Two factors 
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are responsible for this situation. RSSI measured 
values are very strongly related to the conditions 
under which the measurement was carried out, 
which results from the specificity of the radio 
signal. On the other hand, it is extremely difficult 
to determine suitable values of parameters in the 
path-loss model that will be optimal under differ-
ent conditions of the distance estimation process 
[9, 10]. The most popular models based on the 
propagation of radio signals using RSSI include: 
the free-space model, the 2-ray ground model 
and the log-normal shadow model (LNSM) [2, 
11]. The LNSM model is the most universal of 
the three and its usefulness has been confirmed 
for both indoor and outdoor environments [8, 10]. 
In addition, it gives promising results in chang-
ing weather or environmental conditions [12-14]. 
Our research provides a specific look at path loss 
modelling. In most practical system solutions for 
WSN, the number of hardware resources are a 
key limitation. At the same time, the amount of 
data obtained from measurements is also subject 
to significant limitations. For this reason, we fo-
cused on the possibility of using an optimized 
method of distance estimation on devices which 
are characterised by a small amount of resources. 
We also propose a method of defining a relatively 
small measurement set, which can ensure an ac-
ceptable precision of distance estimation. Such an 
approach to the discussed issues is relatively rare 
in the literature. A few examples of analysis of a 
similar type are presented in [15]. In the afore-
mentioned work, the authors propose to estimate 
the parameter of the road loss exponent depend-
ing on the distance, based on the performed mea-
surements. The issue of distance estimation based 
on path loss models and RSSI signal measure-
ments has been the subject of intensive research 
for many years. One of the reasons for the need 
for an in-depth analysis of this topic is that the 
values of the RSSI signal depend on the measure-
ments conditions (influence of interference such 
as: additive noise, multi-path fading, shadow-
ing etc.) as well as the parameters and hardware 
configuration. Extensive experimental research 
on the impact of changes in the environment as 
well as factors influencing the RSSI signal in 
the time domain and frequency domain are pre-
sented in detail in [16]. In turn, the importance 
of weather conditions, including evaluation of 
RSSI signal sensitivity to changes in temperature 
and humidity in the outdoor environment, is the 
subject of the experimental studies presented in 

[13]. Analogous research for the outdoor scenario 
but for the estimation of relatively large distances 
based on RSSI signal measurements is presented 
in [8]. Considering the above-mentioned environ-
mental factors has led to the proposition of many 
new methods. For example, Singh et al. in [17] 
proposes the New Received Signal Strength Indi-
cator (NRSSI) method. This method introduces a 
new way of considering noise, especially thermal 
noise. According to the conducted experiments, 
this method allows to improve the accuracy of 
distance estimation. Moreover, regarding the task 
of locating WSN nodes based on RSSI measure-
ments, the influence of environmental parameters 
on the accuracy of estimates is analysed in [18]. 
Also, in the case of the LNSM model, the main 
research issue is the method of determining the 
value of its parameters for specific measurement 
conditions. In most cases, the experiments focus 
on improving the accuracy of the ranging and in-
creasing the accuracy of the location. The path-
loss model presented in [19] is based on two-
function. Using experimental measurements, the 
authors determined the method of setting param-
eters for two kinds of distances, small and larger. 
A different approach is described in [20, 21]. It in-
volves the use of the Generalised Method of Mo-
ments (GMM) to estimate the distance between 
sensor nodes. This statistical model of GMM was 
bonded with so-called RSSI-D values represent-
ing the set of offline RSSI values. As a result, they 
produced better positioning precision. 

Some of the research works and the resulting 
proposals take into account the specific features 
of the data transmission technology used in WSN. 
In [22], the algorithm of estimating the location of 
the node in the WSN based on Bluetooth technol-
ogy has been combined with determining the pa-
rameters of the path loss model using Bayesian fil-
tering. Research regarding combination of Bayes-
ian inference with K-means clustering to estimate 
indoor positioning is shown in paper [23]. In turn, 
for networks using ZigBee, a series of analyses of 
the impact of environmental conditions on the es-
timation of the model parameters were carried out 
[24, 25]. In the context of the precision of distance 
estimation and location of ZigBee nodes, a com-
parative analysis for two models, the LNSM and 
the Hybrid Teacher Learning Based Optimisation 
Algorithm technique, respectively, was presented 
in [26]. A separate group of research works con-
cerns the definition of generalised methods for 
determining the values of the parameters of path 
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loss models and methods of correcting their val-
ues, which would allow the use of these methods 
in various environmental conditions and in WSN 
based on various technologies. An example of this 
type of work is [27], which describes and experi-
mentally verified the method of joint estimation 
of location coordinates and distance-power gra-
dient for applications using the path loss model, 
in which the parameter values are not known a 
priori. The basis of this solution is the innovative 
use of the nonlinear least-square estimator. On 
the other hand, the authors of [28] conducted an 
in-depth analysis of statistical properties of signal 
propagation in WSN based on a numerical solu-
tion of the wave equation. The conclusions from 
this analysis, supported by the simulation results, 
constitute a set of important guidelines for defin-
ing the methods of determining the parameters 
of many path-loss models. A similar analysis of 
signal propagation based on parametric channel 
models is provided in [20]. 

Recent years have also brought numerous pub-
lications on the optimisation and generalisation of 
methods using path loss models. The research de-
scribed in [29] based on the uncertainty theory, 
and the proposed method is the result of sensitiv-
ity analysis in relation to the properties of wire-
less signal propagation. In turn, [30] describes a 
method of optimising path loss models, which al-
lows for a fairly accurate determination of the dis-
tance correction. The basis of this solution is an 
optimization algorithm known as the “firefly” al-
gorithm and particle swarm optimization. On the 
other hand, in the paper [31] presents the model 
that allows for consideration the variety of param-
eters of the equipment used. This is possible due 
to the generalized extended interpolation method 
during specifying the parameters of the environ-
ment. Another attempt to implement correction 
of distance estimation is presented in the work 
[32]. In this case, the authors used the feedback 
filter structure, which allows for the inclusion of 
historical values of RSSI in the proposed correc-
tion process. Based on these and similar analyses, 
the authors of [33] developed methods of signal 
filtering in relation to the problem of predicting 
patterns in wave propagation and thus predicting 
and correcting the value of the estimated distance 
based on RRSI measurements and path loss mod-
els. The basis of the proposed solution is the use 
of non-linear regression techniques. The new path 
of research on the issues discussed, which uses 
the methods and algorithms of widely understood 

artificial intelligence, cannot be overlooked ei-
ther. In [33] the main attention is focused on the 
issue of the location of nodes and in this context 
the path loss model parameters derived from 
RSSI measurements form a set of training data 
for a multi-layer artificial neural network (ANN). 
The ANN model based on the back propagation 
algorithm is also proposed for direct determina-
tion of the parameters of the path loss model. In 
this case, the basis for learning the ANN is the er-
ror model developed for the LNSM, which is de-
scribed in [34]. In turn, the accuracy of the ANN 
methods is a subject of the comparative analysis 
with other classical methods in [35]. In these 
studies, the method based on regression analysis 
and polynomial approximation was chosen as a 
representative of the classical methods, while the 
ANN represented a multilayer feed-forward net-
work. The authors showed that for the analysed 
cases, ANN offered greater accuracy in estimat-
ing the distance and location of network nodes. 
Finally, it is worth mentioning [36], in which 
the authors proposed a new model of distance 
estimation based on RSSI signal measurements, 
based on genetic programming. The verification 
of this model and its comparison with the classi-
cal LNSM model confirmed the advantage of the 
genetic algorithm. The main purpose of this work 
is to study the sensitivity of this method to change 
the number of inserted so-called particles and the 
number of repetitions of calculations needed to 
correct estimation of the path-loss model param-
eter. The model stability was tested on a reduced 
set of experimentally collected RSSI points. Fi-
nally, we would like to check the accuracy of our 
method in the case of real data. The rest of this pa-
per is organised as follows. Section II introduces 
the path loss exponent estimation using Bayesian 
filtering. In Section III we develop a particle fil-
tering algorithm that will make a joint estimation 
of the position and discrete channel parameters. 
Section IV confirms the advantages of the pre-
sented algorithms and the proposed models in the 
form of experimental results. Section V shows the 
test of selected system on real measurement data. 
Finally, Section VI concludes the paper. 

PATH-LOSS EXPONENT ESTIMATION 
USING BAYESIAN FILTERING

It is well known that the distance between the 
transmitter and receiver affect the strength of the 
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received signal. Path loss may occur due to vari-
ous phenomena. The fundamental one is of course 
free-space path loss but reflection, diffraction, 
fading, shadowing or in general all the obstacles 
that surround or interpose between the transmitter 
and the receiver have influence on received sig-
nal. The RSSI signal, like any other transmitted 
signal, is also subject to these physical laws [1]. 
As stated in Section 2, one of the most popular 
path loss models is the log-normal shadowing 
model (LNSM). It allows for the description of 
these phenomena with the use of the formula:

	 𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛 log 𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉   (1) 

 
 

𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡)) =
1

𝛿𝛿√2𝜋𝜋 𝑒𝑒
(−(𝑧𝑧(𝑡𝑡)−𝑃𝑃𝑟𝑟(𝑑𝑑))

2

2𝛿𝛿2 )
     (2) 

 
 
𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙

𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉𝛿𝛿    (3) 

 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑖𝑖(𝑡𝑡 − 1)𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡))     (4) 
 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) =

𝑤𝑤𝑖𝑖(𝑡𝑡)
∑ 𝑤𝑤𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

,       (5) 

 
 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =

1
∑ 𝑤𝑤𝑗𝑗

2(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

      (6) 

 
 
𝑛𝑛(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖(𝑡𝑡)𝑛𝑛𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1       (7) 
  
 
𝑑𝑑(𝑖𝑖) = |𝑑𝑑𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑝𝑝𝑝𝑝| = |10𝜆𝜆(𝑖𝑖) − 10𝛽𝛽(𝑖𝑖)|    (8) 
 
 
𝜆𝜆(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑎𝑎𝑎𝑎
      (9) 

 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑝𝑝𝑝𝑝
      (10) 

  
〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 = 10𝛽𝛽(𝑖𝑖)       (11) 
 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉

10𝑛𝑛𝑝𝑝𝑝𝑝
      (12) 

 
 

〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉 =
∑ 𝑃𝑃𝑟𝑟(𝑖𝑖)𝑁𝑁𝑠𝑠
𝑖𝑖=1
𝑁𝑁𝑠𝑠

      (13) 
 
 

	 (1)

where: Pr(d) is the received power at distance d 
from the transmitter, Pr(d0) the received 
power measured at reference distance d0, 
n is the path loss exponent, and  is a zero 
mean Gaussian noise, which represents 
the random effect caused by shadowing.

The key parameter in this model is the path 
loss exponent (PLE). There are a large number of 
theoretical analyses of path loss exponent estima-
tion but in practice, proper determination of its 
value is challenging task [1, 2, 10]. This path loss 
model parameter can be calculated by summing a 
perfect free-space channel. Such assumption is an 
oversimplification in many practical applications 
where extensive channel measurements are not 
possible. Therefore, the problem of determining 
the value of the PLE is the subject of a very large 
number of studies and experiments. The descrip-
tion of a generic practical analysis of PLE value 
estimation in three configurations, respectively: 
outdoor-free space environment, indoor-building 
space and indoor-industrial space is the subject of 
research presented in [37]. Among the many ana-
lysed parameters, the authors took into account 
the values of path loss, path loss exponent and 
RSSI as well as analysed the effect of log-normal 
shadowing, represented as standard deviation. 
The presented results confirmed the theoretical 
values provided in many previous studies. Gener-
ally, in the outdoor environment, the value of n 
typically varies between 1 and 3 [3, 19]. With re-
gard to the indoor environment, a broad analysis 
of practical methods and the resulting precision 
of PLE value estimation is presented in [38]. The 
average PLE value shown by the authors was 4.2, 
which corresponds to the theoretical value range 
for the indoor environment, which is 4 to 6. It is 
worth noting, however, that in some cases, such 

as indoor environment with moving objects, the 
channel characteristics tend to change signifi-
cantly over time. For this reason, allocation of 
transmitters and receivers is extremely important 
as well as the arrangement among them. These 
issues are discussed in detail in [39]. The authors 
propose a scheme of optimal node arrangement 
for typical path loss exponent estimation. The im-
portance of node allocation is also investigated 
in [40]. The research presented in it was based 
on ad-hoc large-scale WSN. The distribution of 
nodes in this network corresponded to the homo-
geneous planar Poisson point process. Based on 
such a data transmission structure, three methods 
of estimating the PLE value at each node have 
been proposed, assessed and compared. An equal-
ly important factor, apart from those mentioned 
above, is the influence of weather conditions. 
Especially, in outdoor environment, the path loss 
exponent values tend to change over a long period 
of time because of seasonal reasons [7, 13]. It is 
also worth emphasising that it is not guaranteed 
that all anchor nodes radiate in the same manner. 
The elimination of this and other factors, signifi-
cantly affecting the accuracy of PLE estimation, 
was and is a motivation for many proposals of 
modified and new methods [41, 42]. 

In our opinion, in the case of the assump-
tions presented in the Introduction, a Bayesian fil-
ters are the way to get good results [43-45]. This 
method has been widely used for several years in 
systems using RSSI measurements [44, 45]. We 
focused our research on the use of Particle Filter 
(PF). The research results obtained so far confirm 
that the use of Bayesian filtering in the context of 
the RSSI signal can improve the efficiency of de-
vice location [46-48]. The PF algorithm has been 
the subject of many extensions and modifications. 
In paper [44], the authors describe that the PF al-
gorithm can improve indoor location performance 
based on RSSI. The authors modified the particle 
filtering by adding a Kalman filter to reduce the 
influence of signal noise and multipath reflec-
tions on the RSSI. Subsequently, the authors in 
[47] proposed a model fit for the rapid volatility of 
RSS. A signal tracking method based on a particu-
late filter was used. It was observed that the model 
describes the real experimental data quite well. In 
turn, authors in [45] used a particle filter algorithm 
to estimate the distance in a multi-antenna design. 
Their system consisted of a transmitter and a re-
ceiver equipped with multiple antennas. The RSSI 
signal values were used for the computation of 
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important weights within the proposed algorithm. 
They used the log-normal model and the ground 
reflection model. The weighted particles were 
resampled to ensure proper distribution and den-
sity. The authors in [48] propose use of particle 
filter in a Novel Cooperative Localisation Algo-
rithm. They argued that the real data from WSN 
nodes used in marine search and rescue operations 
was inaccurate due to the presence of the wave 
shadow effect. The use of particle filters allowed 
to reduce measurement errors. 

From the point of view of the objectives of 
our article, interesting research is presented in 
[46]. This work describes the results of experi-
ments of 3D localisation of WSN nodes from an 
Unmanned Aerial Vehicle (UAV) with the use of 
a particle filter-based algorithm. The algorithm 
uses the RSSI measurements collected by a node 
located on the UAV and was run on an on-board 
embedded computer. The presented analysis also 
covers the numerical complexity of the method, 
and thus the possibility of its implementation on 
equipment with limited resources.

PROPOSED METHOD

In recursive Bayesian estimation the probabil-
ity density function of a random vector is tracked 
over time [49]. At each time step (t), a model 
describing the evolution of the random vector, 
as well as an observation model describing how 
observations are related to the state, are present. 
In this method a set of random samples is used. 
This samples are called particles [50]. The par-
ticles have an associated its weight wi(t) directly 
connected with likelihood p(ni(t)|z(t)), where ni(t) 
is the state of the i-th particle and z(t) is the ob-
served RSSI value, at time t [43]. The state of the 
i-th particle is only related to the n parameter. The 
implemented particle filter (see Algorith shown in 
Figure 1) performs several steps: generating par-
ticles, determining particles weight, resampling 
and estimation desired quantities. In the predic-
tion step, we create with a Gaussian distribution 
N random particles with ni value in the range from 
0 to 5. In the next steps particles change their state 
in a random way. The value of standard deviation 
δ is constant. As a process noise parameter, our 
particle filter used the worst deviation value taken 
from our measurements, e.g., δ = 8.27 m. In the 
update step, according to the model shown in (1) 
and Gaussian noise  with standard deviation δ: 

	

𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛 log 𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉   (1) 

 
 

𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡)) =
1

𝛿𝛿√2𝜋𝜋 𝑒𝑒
(−(𝑧𝑧(𝑡𝑡)−𝑃𝑃𝑟𝑟(𝑑𝑑))

2

2𝛿𝛿2 )
     (2) 

 
 
𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙

𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉𝛿𝛿    (3) 

 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑖𝑖(𝑡𝑡 − 1)𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡))     (4) 
 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) =

𝑤𝑤𝑖𝑖(𝑡𝑡)
∑ 𝑤𝑤𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

,       (5) 

 
 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =

1
∑ 𝑤𝑤𝑗𝑗

2(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

      (6) 

 
 
𝑛𝑛(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖(𝑡𝑡)𝑛𝑛𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1       (7) 
  
 
𝑑𝑑(𝑖𝑖) = |𝑑𝑑𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑝𝑝𝑝𝑝| = |10𝜆𝜆(𝑖𝑖) − 10𝛽𝛽(𝑖𝑖)|    (8) 
 
 
𝜆𝜆(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑎𝑎𝑎𝑎
      (9) 

 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑝𝑝𝑝𝑝
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〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 = 10𝛽𝛽(𝑖𝑖)       (11) 
 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉

10𝑛𝑛𝑝𝑝𝑝𝑝
      (12) 

 
 

〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉 =
∑ 𝑃𝑃𝑟𝑟(𝑖𝑖)𝑁𝑁𝑠𝑠
𝑖𝑖=1
𝑁𝑁𝑠𝑠

      (13) 
 
 

	 (2)

where: Pr(d) is described by the propagation 
model using the appropriate ni parameter 
for the i-th particle:

	

𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛 log 𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉   (1) 

 
 

𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡)) =
1

𝛿𝛿√2𝜋𝜋 𝑒𝑒
(−(𝑧𝑧(𝑡𝑡)−𝑃𝑃𝑟𝑟(𝑑𝑑))

2

2𝛿𝛿2 )
     (2) 

 
 
𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙

𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉𝛿𝛿    (3) 

 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑖𝑖(𝑡𝑡 − 1)𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡))     (4) 
 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) =

𝑤𝑤𝑖𝑖(𝑡𝑡)
∑ 𝑤𝑤𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

,       (5) 

 
 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =

1
∑ 𝑤𝑤𝑗𝑗

2(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

      (6) 

 
 
𝑛𝑛(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖(𝑡𝑡)𝑛𝑛𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1       (7) 
  
 
𝑑𝑑(𝑖𝑖) = |𝑑𝑑𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑝𝑝𝑝𝑝| = |10𝜆𝜆(𝑖𝑖) − 10𝛽𝛽(𝑖𝑖)|    (8) 
 
 
𝜆𝜆(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑎𝑎𝑎𝑎
      (9) 

 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑝𝑝𝑝𝑝
      (10) 

  
〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 = 10𝛽𝛽(𝑖𝑖)       (11) 
 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉

10𝑛𝑛𝑝𝑝𝑝𝑝
      (12) 

 
 

〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉 =
∑ 𝑃𝑃𝑟𝑟(𝑖𝑖)𝑁𝑁𝑠𝑠
𝑖𝑖=1
𝑁𝑁𝑠𝑠

      (13) 
 
 

	 (3)

Next, the weights are updated and normalised: 

 	

𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛 log 𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉   (1) 

 
 

𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡)) =
1

𝛿𝛿√2𝜋𝜋 𝑒𝑒
(−(𝑧𝑧(𝑡𝑡)−𝑃𝑃𝑟𝑟(𝑑𝑑))

2

2𝛿𝛿2 )
     (2) 

 
 
𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙

𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉𝛿𝛿    (3) 

 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑖𝑖(𝑡𝑡 − 1)𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡))     (4) 
 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) =

𝑤𝑤𝑖𝑖(𝑡𝑡)
∑ 𝑤𝑤𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

,       (5) 

 
 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =

1
∑ 𝑤𝑤𝑗𝑗

2(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

      (6) 

 
 
𝑛𝑛(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖(𝑡𝑡)𝑛𝑛𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1       (7) 
  
 
𝑑𝑑(𝑖𝑖) = |𝑑𝑑𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑝𝑝𝑝𝑝| = |10𝜆𝜆(𝑖𝑖) − 10𝛽𝛽(𝑖𝑖)|    (8) 
 
 
𝜆𝜆(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑎𝑎𝑎𝑎
      (9) 

 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑝𝑝𝑝𝑝
      (10) 

  
〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 = 10𝛽𝛽(𝑖𝑖)       (11) 
 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉

10𝑛𝑛𝑝𝑝𝑝𝑝
      (12) 

 
 

〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉 =
∑ 𝑃𝑃𝑟𝑟(𝑖𝑖)𝑁𝑁𝑠𝑠
𝑖𝑖=1
𝑁𝑁𝑠𝑠

      (13) 
 
 

	 (4)
and: 

	

𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛 log 𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉   (1) 

 
 

𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡)) =
1

𝛿𝛿√2𝜋𝜋 𝑒𝑒
(−(𝑧𝑧(𝑡𝑡)−𝑃𝑃𝑟𝑟(𝑑𝑑))

2

2𝛿𝛿2 )
     (2) 

 
 
𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙

𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉𝛿𝛿    (3) 

 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑖𝑖(𝑡𝑡 − 1)𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡))     (4) 
 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) =

𝑤𝑤𝑖𝑖(𝑡𝑡)
∑ 𝑤𝑤𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

,       (5) 

 
 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =

1
∑ 𝑤𝑤𝑗𝑗

2(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

      (6) 

 
 
𝑛𝑛(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖(𝑡𝑡)𝑛𝑛𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1       (7) 
  
 
𝑑𝑑(𝑖𝑖) = |𝑑𝑑𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑝𝑝𝑝𝑝| = |10𝜆𝜆(𝑖𝑖) − 10𝛽𝛽(𝑖𝑖)|    (8) 
 
 
𝜆𝜆(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑎𝑎𝑎𝑎
      (9) 

 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑝𝑝𝑝𝑝
      (10) 

  
〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 = 10𝛽𝛽(𝑖𝑖)       (11) 
 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉

10𝑛𝑛𝑝𝑝𝑝𝑝
      (12) 

 
 

〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉 =
∑ 𝑃𝑃𝑟𝑟(𝑖𝑖)𝑁𝑁𝑠𝑠
𝑖𝑖=1
𝑁𝑁𝑠𝑠

      (13) 
 
 

	 (5)

where  stands for the normalised weights. 
The resampling approach is used to avoid de-

generation problems in this method when Neff falls 
below some threshold NT [51, 52]: 

	

𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛 log 𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉   (1) 

 
 

𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡)) =
1

𝛿𝛿√2𝜋𝜋 𝑒𝑒
(−(𝑧𝑧(𝑡𝑡)−𝑃𝑃𝑟𝑟(𝑑𝑑))

2

2𝛿𝛿2 )
     (2) 

 
 
𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙

𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉𝛿𝛿    (3) 

 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑖𝑖(𝑡𝑡 − 1)𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡))     (4) 
 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) =

𝑤𝑤𝑖𝑖(𝑡𝑡)
∑ 𝑤𝑤𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

,       (5) 

 
 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =

1
∑ 𝑤𝑤𝑗𝑗

2(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

      (6) 

 
 
𝑛𝑛(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖(𝑡𝑡)𝑛𝑛𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1       (7) 
  
 
𝑑𝑑(𝑖𝑖) = |𝑑𝑑𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑝𝑝𝑝𝑝| = |10𝜆𝜆(𝑖𝑖) − 10𝛽𝛽(𝑖𝑖)|    (8) 
 
 
𝜆𝜆(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑎𝑎𝑎𝑎
      (9) 

 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑝𝑝𝑝𝑝
      (10) 

  
〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 = 10𝛽𝛽(𝑖𝑖)       (11) 
 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉

10𝑛𝑛𝑝𝑝𝑝𝑝
      (12) 

 
 

〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉 =
∑ 𝑃𝑃𝑟𝑟(𝑖𝑖)𝑁𝑁𝑠𝑠
𝑖𝑖=1
𝑁𝑁𝑠𝑠

      (13) 
 
 

	 (6)

Finally, the path-loss exponent is calculated 
by means of a weighted sum of the state informa-
tion coming from all the particles: 

	

𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛 log 𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉   (1) 

 
 

𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡)) =
1

𝛿𝛿√2𝜋𝜋 𝑒𝑒
(−(𝑧𝑧(𝑡𝑡)−𝑃𝑃𝑟𝑟(𝑑𝑑))

2

2𝛿𝛿2 )
     (2) 

 
 
𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑟𝑟(𝑑𝑑0) − 10𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙

𝑑𝑑
𝑑𝑑0
+ 𝜉𝜉𝛿𝛿    (3) 

 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑖𝑖(𝑡𝑡 − 1)𝑝𝑝(𝑧𝑧(𝑡𝑡)|𝑛𝑛𝑖𝑖(𝑡𝑡))     (4) 
 
 
𝑤𝑤𝑖𝑖(𝑡𝑡) =

𝑤𝑤𝑖𝑖(𝑡𝑡)
∑ 𝑤𝑤𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

,       (5) 

 
 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 =

1
∑ 𝑤𝑤𝑗𝑗

2(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

      (6) 

 
 
𝑛𝑛(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖(𝑡𝑡)𝑛𝑛𝑖𝑖(𝑡𝑡)𝑁𝑁

𝑖𝑖=1       (7) 
  
 
𝑑𝑑(𝑖𝑖) = |𝑑𝑑𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑝𝑝𝑝𝑝| = |10𝜆𝜆(𝑖𝑖) − 10𝛽𝛽(𝑖𝑖)|    (8) 
 
 
𝜆𝜆(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑎𝑎𝑎𝑎
      (9) 

 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−𝑃𝑃𝑟𝑟(𝑖𝑖)

10𝑛𝑛𝑝𝑝𝑝𝑝
      (10) 

  
〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 = 10𝛽𝛽(𝑖𝑖)       (11) 
 
 
𝛽𝛽(𝑖𝑖) = 𝑃𝑃𝑟𝑟(𝑑𝑑0)−〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉

10𝑛𝑛𝑝𝑝𝑝𝑝
      (12) 

 
 

〈𝑃𝑃𝑟𝑟(𝑖𝑖)〉 =
∑ 𝑃𝑃𝑟𝑟(𝑖𝑖)𝑁𝑁𝑠𝑠
𝑖𝑖=1
𝑁𝑁𝑠𝑠

      (13) 
 
 

	 (7)

RESULTS

The real outdoor RSSI measurements Pr(i) 
between two ZigBee nodes were performed. 
The measurements were carried out for vari-
ous distances ranging from 1 to 100 meters. The 
measurement system consisted of two XBee ra-
dio modules (XB24-Z7WIT-004) with a  2mW 
wired antenna operating in the 2.4 GHz band. 
A programming platform is based on the Esp32 
module. During the measurements, the distance 
between the modules was changed and the RSSI 
values were recorded for further analysis. The re-
ceiver and the transmitter were placed 1 m above 
the ground. The schematic diagram of the mea-
suring system is shown in Figure 2. 

For each measured distance (d), a series of 60 
measurements (Ns) of RSSI value was made. The 
measurement system was described in detail in 
our previous work [12]. The results are presented 
in Figure 3. The measurements (shown in Figure 
3) were carried out at average temperature T = 
15.56oC and average air humidity H = 49.93%. 
The value of the RSSI versus the distance de-
creases according to the logarithmic function. 
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Figure 1. Algorithm 1 – the path-loss exponent estimation algorithm

Figure 2. Model of the measuring XBee system

The value of naχ = 1.472 was obtained by approxi-
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where: Pr(d0) – corresponds to reference RSSI 
value at distance d0 = 1 m, Pr (i) – cor-
responds to RSSI average values taken 
from Figure 4 for distances 3, 20, and 90 
meters for approximated path loss model 
with nax = 1.472, and npf are taken from 
particle filter optimisation process. Fig-
ure 4 explains how the ADEE has been 
calculated. For small distances, this error 
is relatively small, but grows rapidly with 
increasing distance. 

The results of calculating the standard devia-
tion of ADEE for 90 m and for different N and 
repetitions are presented in Figure 4. They show 
that the best statistical results are provided by fil-
ters with the number of particles higher than 10. 
In addition, multiple repetition of calculations 
(equilibration) allows the use of filters even for a 

very low number of inserted particles. For further 
tests we decided to choose three systems: (N = 25, 
Eq = 10), (N = 50, Eq = 10), (N = 100, Eq = 10) 
called as: M1, M2, M3. They are characterised 
by a relatively low computational cost and small 
statistical error associated with the algorithm (see 
Table 1). Next, to compare these three systems 
with a system with better statistics but with sig-
nificantly more time-consuming calculations, the 
M4 system was chosen (N = 100 and Eq = 1000). 
Those results show that the averaged ADEE in re-
lation to the approximated model does not exceed 
7 meters for a distance of 90 m, one meter for a 
distance of 20 m, and 0.06 m for 3 m. The compu-
tational cost associated with experimental points 
Ns is O(N∙Nd∙∙Eq). The final number of iteration 
steps necessary to evaluate the average path loss 
exponent, npf, increases with increasing of N, Ns, 
Nd and Eq, and for considered systems M1, M2, 

Figure 3. The results of RSSI measurements and calculated path-loss model for different distances

Figure 4. Graphical explanation of distance error calculating
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M3 and M4 are equal to 250, 2500, 5000, 10 000 
and 1  000  000 steps, respectively. The average 
times of running presented in Table 1, have shown 
that the average CPU time is not proportional to 
the number of iterations used during tests. The 
optimisation program was written in the Matlab 
environment. Code analysis showed that the run-
time environment automatically optimises the 
operation of the program. Therefore, the start-up 
times are not reliable. In next step of our calcu-
lation, the models considered were subjected to 

the second tests. This was done by examining 
the sensitivity of those systems to depletion of 
the input data, i.e. experimental data. It was done 
by randomly decreasing the number of measure-
ments, Ns, from the initial 60 to 15, independently 
for each distance. Figure 6 shows the dependence 
of the average absolute distance estimation error 
for the respective systems depending on the num-
ber of experimental points. 

All results were characterised by one relation-
ship. Reducing the size of the input data involve 

Table 1. An average ADEE and its standard deviation for selected systems

No. N Eq
∙102 npf

d(3)
[cm]

std. dev.
[cm]

d(20)
[cm]

std. dev.
[cm]

d(90)
[m]

std. dev.
[m]

comp. 
cost
∙104

cpu time
[s]

M1 25 0.1 1.452 5.0 0.21 89.4 3.61 6.087 0.2498 0.25 0.90

M2 50 0.1 1.451 5.0 0.20 88.6 3.77 6.038 0.2578 0.50 0.96

M3 100 0.1 1.450 5.1 0.13 91.3 1.90 6.219 0.1318 1.00 1.22

M4 100 10.0 1.450 5.3 0.01 93.9 0.26 6.399 0.0190 100.0 40.46

Figure 5. The standard deviation of ADEE for d(90) for different number 
of particles and different number of repetitions steps

Figure 6. Average ADEE at d(90) for M1, M2, M3 and M4 for different number 
of measurements points remaining after depletion process
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overestimation of the distance measurement. Ini-
tially, the fluctuation of distance is not too high, 
the differences become more visible when the num-
ber of removed measurement points exceeds 50%. 
Above this value, a better quality of the M4 sys-
tem is visible. Moreover, it seems that the chosen 
system (M4) gave a good distance estimation even 
if from of 60 measuring points per distance mea-
surement remains only 15 remain. The results cal-
culated based on original number of measurements 
were characterised by average distance estimation 
error equal to ≈6.4 m and small statistical error, not 
exceeding 0.26 m for all systems (see Table 1). 

Unfortunately, the situation is completely dif-
ferent in the case of progressive reduction of the 
number of experimental points, especially for the 
M1, M2, M3 systems. Figure 7 presents the stan-
dard deviation of ADEE for d(90) after decreas-
ing of experimental data. The results show that 
a small reduction in the number of measurement 
points results in a significant increase in the stan-
dard deviation of ADEE. Increasing the value of 
standard deviation is caused by too little random-
ness in removing measurement points. To keep 
the standard deviation low, it became necessary 
to increase the number of equilibrium steps for 
each distance (compare systems M3 and M4 sys-
tems). These results confirm that increasing the 
number of repetitions allows a significant reduc-
tion of statistical error more than increasing the 
number of particles. It should be added that this 
error is related only to the quality of the pseudo-
random number generator and using a generator 
with a better distribution of generated numbers 
should reduce this error. 

Based on the results shown in Figures 6 and 7, 
we can estimate the maximum distance measure-
ment error. From Figure 6 the maximum absolute 
distance estimation error is 10 m for Ns = 15 and 
the highest standard deviation from Figure 7 is 
3.5 m for Ns = 25. Hence, the estimated maximum 
measurement error is 10 m ± 3.5 m depends on 
the input data and the entire optimisation proce-
dure. In summary, the M3 and M4 systems allow 
to similar distance estimation. They are distin-
guished by their computational complexity and 
statistical error. Increasing the number of itera-
tions in the M3 system reduces the statistical er-
ror and converts it to the M4. Given the above, 
in our opinion system M3 is not very sensitive to 
reducing the amount of input data. It works with 
optimal speed and in a small way overstates the 
distance measurement. 

In Figure 8 the path loss exponents curves for 
the M3 system and originally approximated from 
the experimental data are compared. One can see 
that the difference between the RSSI data for a 
distance of 100 m does not exceed 0.6 dBm (see 
inset). The distance measurement error is less 
than 10% for such large distances. 

TESTS WITH REAL DATA

A series of measurements were performed 
to evaluate the usefulness of the M3 system  
(N = 100, Eq = 10, npf = 1.450). During the collec-
tion of the experimental data presented in Figure 
2, the data necessary to prepare the test were also 
saved. Thus, the measuring conditions were the 

Figure 7. The standard deviation of ADEE for d(90) after decreasing the experimental data
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same. The test data have not previously been used 
previously for model estimation. Measurements 
were made for a known distance d equals to 3 m, 
20 m, and 70 m between the devices. The differ-
ent number of RSSI samples, ranged from 10 to 
60, were collected for each distance. The average 
distance dest was calculated directly from the fol-
lowing expressions: 
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Where Pr (d0) corresponds to reference RSSI val-
ue at distance d0 = 1 m, Pr (i) corresponds 

to average RSSI values taken from mea-
surements Pr (i) for distances 3, 20, and 70 
m, Ns is the number of measured experi-
mental points, and npf = 1.450 are taken 
from particle filter optimisation process 
for the M3 system. The results are shown 
in Table 2.

The obtained results show that the standard 
deviation of distance estimation increases with 
the increase of measured distances. Moreover, 
as the number of measured points decreases, 
the standard deviation also increases. It should 
be noted that the determined path loss parameter 
makes it possible to estimate the distance quite 
accurately. On the other hand, this estimate is 
burdened with a fairly large statistical error (com-
pare Table 1 for M3 with Table 2). The measure-
ment error is influenced by both the error related 

Figure 8. Approximated path-loss model and M3 model for different distances. Model 
M3 was calculated for remained number of measured points (Ns ) equal to: 60, 40, 25 

and 15, respectively. The inset shows zoomed last point of presented results

Table 2. Estimated distances and their standard deviations for the npf = 1.45 for different number measurement points Ns

Ns

 
〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 std. dev.

 
〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 std. dev.

 
〈𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒〉 std. dev.

[m] [m] [m] [m] [m] [m]

60* 2.88 0.97 18.20 6.17 66.51 22.73

60 2.93 1.01 19.05 6.56 70.88 24.63

40 2.97 1.14 19.12 6.66 67.50 24.32

20 3.06 1.31 19.32 6.88 72.21 25.58

10 2.89 1.74 21.09 7.12 73.95 27.29
Note: *data obtained for approximated model nax = 1.472nax
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to the operation of the device itself and the envi-
ronmental conditions in which the measurement 
was carried out. Moreover, while the standard 
deviation of the RSSI measurements is relatively 
small, the already calculated distance is charac-
terised by very large values of the standard devi-
ation (see Table 2). Table 2 also shows estimated 
distances obtained for the approximated path loss 
exponent parameter. The use of the approximated 
parameter nax to estimate the distances resulted in 
the underestimation of the obtained distance val-
ues. The lower values of the standard deviation 
for the same data result directly from the higher 
value of the path loss parameter. 

CONCLUSIONS

The channel model parameters variation and 
noise will result in inaccurate distance measure-
ment, and consequently, incorrect positioning. 
Many authors use various approaches to model 
the PLE. Linear regression with the Least Square 
Method [15, 53], Generalized Additive Model 
[54], Multivariate Linear Regression [55], a non-
linear regression [56] or machine learning com-
bined with clustering algorithm [57] are widely 
used. The statistical approaches are also used to 
estimate PLE [58]. The presented methods have 
more or less computational complexity. The au-
thors in [15] proposed a simplified low complex-
ity RSS based location estimator for unknown 
path loss model. They linearised the non-linear 
path loss equations using linear least square 
(LLS) solution. This method allows to improve 
the inaccurate distance measurement and esti-
mate the optimal position and its computational 
complexity is low. Moreover, LLS reduces the 
effect of Gaussian noise very well. However, if 
the environment is noisy (the signal is blocked or 
multipath exist), the measured RSSI values are 
far away from the expected values and LLS may 
not yield a good solution in such an environment. 
In this case, using the dynamic estimation of the 
path loss exponent parameter based on Bayesian 
filtering method gave good results. 

In conclusion, the use of a Bayesian par-
ticle filter to dynamically estimate the path loss 
exponent for experimental measurements was 
successful. Examination of the sensitivity of the 
chosen systems to depletion of the input data, 
i.e., experimental data was done. In addition, we 
perform a test that uses the estimated path loss 

exponent parameter to estimate distances based 
on the measured RSSI values for selected distanc-
es. The method is easy to implement and resis-
tant to a small number of collected measurement 
points. The most important results from this study 
include the following. The particle filter can be 
successfully used to predict path loss exponent. 
Increasing the number of particles improves the 
convergence of results but results in an increase 
of computational complexity. Optimising the way 
generation of pseudo-random numbers and limit-
ing their use in the filter would speed up the de-
termination of npf and reduce the statistical error 
of the method. Filter optimisation based on reduc-
ing the amount of input data, while maintaining a 
constant number of particles, causes a dramatic 
increase in error. Therefore, it became neces-
sary to increase the number of particles. The per-
formed tests confirmed the necessity to increase 
the number of collected measuring points to re-
duce the error of the distance estimation. 
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